Language-Universal Speech Processing: Lessons from ASAT and Large Pre-train Models with Extensions to Multilingual ASR

Chin-Hui Lee School of ECE, Georgia Tech Atlanta, GA, USA chl@ece.gatech.edu

Thanks to Prof. S. M. Siniscalchi and Prof .Y. Tsao for ASAT collaboration

1

Outline and Talk Agenda

- · Brief history of ASR and key messages
- State-of-the-art top-down ASR: blackbox, data-driven
 Current capabilities and limitations: nice but not good enough
- What more can be done? What's next?
 > Automatic Speech Attribute Transcription (ASAT)
 > Bottom-up attribute detection and knowledge Integration
- Recent ASAT effort: language-universal speech units
 Attribute-based visible speech and multilingual ASR, etc.
- Recent ASR and DNN efforts
 Large pre-train models and tools for multilingual ASR
 Hopfield and Hinton just won 2024 Nobel Prize (Physics)
- · Conclusion and future work everyone can contribute

A Brief History of Speech Recognition

3

State-of-the-art ASR Capabilities (1/3)

O-COCOSDA2024

State-of-the-art ASR Capabilities (2/3)

- Use HMM to model phones, words and sentences
- Work well if a task follows some specified training protocols
 - > Speaker: speaking rate, accent, age, gender, emotion state, etc.
 - Speaking environment: channel, background noise, etc.
 - > Acoustics and signal acquisition devices, push-to-talk, etc.
 - > Domain knowledge: vocabulary, syntax, semantics, etc.
- Achieve high accuracies for resource-rich languages > English, Mandarin, Arabic, and many others
- Extend ASR learning methodology to other communities, e.g., machine translation, text understanding, bioinformatics
- Deploy many data-driven modeling tools for HMM, ANN, LM But do they lower entry barriers to ASR and advance technologies?

-	0	-COCOSDA2024

5

5

State-of-the-art ASR Capabilities (3/3)

A Problem with Top-Down Integrated Search

 Manner probability evolution is shown in the location around the error: Safra → Stock For

From Blackbox Learning to Explainable Al

- Brute-force score-based image and speech recognition (粗功)
- No detailed analysis (細功): requiring domain knowledge for problem solving, not just blind tag-based DNN learning
- What about today's top-down ASR?
 > Giving unexpected results: not human-like natural user interfaces (NUIs)
- From black-box to white-box: knowledge-driven modeling for ASR
 Automatic speech attribute transcription (Lee, *et al, Proc. IEEE*, 2013)
- Desperately needed new effort: knowledge-driven Explainable AI

O-COCOSDA2024

8

Human-Based Speech Processing

- Human speech recognition (HSR): no 'strange' errors
- Learning from spectrogram reading and HSR
 - > Explore speech knowledge hierarchy, from acoustics to pragmatics
 - > Incorporate acoustic and auditory cues in speech
 - > Weigh & combine evidences to form cognitive hypotheses
 - > Verify them until consistent decisions are reached

Bottom-up knowledge source integration

- > But also leveraging upon 55 years of data-driven modeling
- > ASAT: providing a collaborative vehicle

O-COCOSDA2024

Learning from Speech Science

Vast speech literature & ideas yet to be explored in ASR

O-COCOSDA2024

10

0

Automatic Speech Attribute Transcription

11

Detection of Manner of Articulation

Another Visible Speech: Landmarks

DNN-based Phone Posteriogram

- · From HMM to DNN models: better accuracies
- Posteriorgram: DNN outputs simulating posteriors
 Clear lines indicating high detection probabilities
 - Clear lines indicating high detection probabilities

> "that's fine" or "sil dh ae s f ay n sil"

AFFILIATE
 STOCK
 FOR
 string
 AFFILIATE
 STOCK
 FOR
 st
 st
 st
 st
 st
 st
 St
 Other attribute detectors can function similarly when needed

O-COCOSDA2024

Suprasegmental Prosody and Duration Features for Correction (Future Paper)

If the Fed pushes the dollar higher, AND MAKER OF IT MAY CURB the demand for U.S. exports.

17

Language-Universality: American Manner **Detectors for Error Correction in Mandarin**

Knowledge Integration in Mandarin LVCSR

	WER (%)	CER (%)	SER (%)
Baseline	13.75	10.56	7.79
+Manner	13.45	10.20	7.44
+Break	12.57	9.81	7.13
+M+B	12.43	9.36	6.90
+B+Pitch	12.26	8.93	6.73
+M+B+P	12.24	8.85	6.63

Manner, break and pitch models all improve Mandarin ASR performances progressively & additively (ISCSLP2012)

O-COCOSDA2024

19

19

Attribute Detection Performance

• 21 detectors (ANN) not HMM)	Attribute	ANN	Naïve
~ 21 delectors (Ann, not right)	anterior	93.2	63.8
 WSJ0 training (excluding 6% CV) 	back	92.9	80.4
Nov02 testing (220 uttorspace)	continuant	89.93	55.7
- Novaz testing (330 utterances)	coronal	93.1	74.5
 Little context, no lexicon, no syntax 	dental	99.1	98.9
	fricative	95.4	84.7
Necel 07 10/	glottal	99.7	99.2
- Nasal. 97.1%	approximant	95.9	90.8
– Dental: 99.1%	high	94.9	83.3
– Glottal: 99 7%	labial	92.5	89.0
	low	96.9	90.7
	mid	93.6	88.2
– Tense: 90.50%	nasal	97.1	91.3
– Continuant: 89 93%	retroflex	98.4	93.8
	round	93.4	85.3
	stop	94.9	84.7
• DNN: all detection rates > 90%	tense	90.5	60.5
	velar	98.4	94.6
(ICASSP2012)	voiced	95.4	59.9
· · · · · ·	vowel	91.3	67.5

O-COCOSDA2024

Multilingual ASR: Current Status

- Recent advances: single large pre-trained models • Whisper, Nemo, etc. plus language-specific fine-tuning
- Technology dimensions
 - \geq Modeling unit: language-universal vs language-specific, such as IPA, characters (CTC), speech attributes (ASAT)
 - Word modeling based on acoustic modeling units \triangleright
 - \geq Language modeling (LM): language-dependent
 - Training data: resource-rich vs resource-limited settings \geq
 - Feature: language-universal vs language-specific \geq
- From domain-specific to domain-independent LM WSJ0 WER: 4% (trigram), 7% (bigram), 70% (0-gram)

21	O-COCOSDA2024

21

Effect of Features on Language Identification

- Our recent study on multilingual ASR (Interspeech2024)
- Multilingual Spoken Words Corpus (MSWC for isolated commands)
 - 8 in-domain (ID) languages with 500 in-vocabulary (IV) training samples 3 in-domain out-of-vocabulary (ID-OOV) languages 3 lout-of domain (OD) out-of-vocabulary unseen language (UL) 30 samples in each evaluation set in each language
- Language ID models trained by language-specific data
- Domain adversarial training (DAT) for language-universal as compared to conventional feature extraction (FE): DAT hurts phone models the most
 - DAT reduces language specificity and greatly degrades ID accuracies

Table 3: Language identification accuracy (%) with (w/) and without (w/o) DAT for characters, phonemes and attributes.

System (\downarrow)/Units (\rightarrow)	Characters	Phonemes	Attributes (ours)
w/o DAT	91.35	91.10	90.47
w/ DAT	45.24	49.66	34.10

Spoken Keyword Recognition (SKR)

- In-domain (seen languages), in-vocabulary (ID-IV) SKR
 - > Basechar and BasePhone use language-specific training
 - > Baseattr is language-universal and did not perform as well
- After DAT, DAT_{attr} outperforms DAT_{char} and DAT_{phone}

Table 4: Testing WER (%) of the in-domain set on 8 richresource languages and the average (Avg.).

C					ID-IV				
System	en	de	fr	fa	es	ru	it	pl	Avg.
Basechar	13.14	12.57	13.65	14.77	11.89	15.50	14.39	15.00	13.86
Basephone	12.73	11.70	13.29	14.30	11.84	12.96	14.63	15.14	13.32
Baseattr (ours)	13.28	12.04	13.69	13.53	12.20	13.67	15.13	14.98	13.56
DATchar	18.73	16.45	19.55	16.91	14.99	17.98	17.19	18.62	17.55
DATphone	17.76	18.33	21.12	20.00	17.58	14.97	18.91	17.65	18.29
DAT _{attr} (ours)	15.51	13.74	16.27	15.47	13.85	13.83	16.73	15.75	15.14

O-COCOSDA2024

23

23

In-Domain Out-of-Vocabulary (ID-OOV) SKR

- Models obtained as before (no retraining, zero-shot transfer)
 - > Basechar degrades greatly (poor character sequence modeling)
 - > Baseattr & BasePhone are language-consistent and perform better
- After DAT, slight improvements are observed

Table 5: Zero-shot transfer:	Testing	WER	(%)) of	the	3	in-
domain out-of-vocabulary (ID	00V)	keywo	rds j	from	Ru	ssi	an,
Italian, and Polish.							

Grant and	ID OOV						
System	ru	it	pl	Avg.			
Basechar	63.96	44.50	40.77	49.74			
Basephone	31.15	40.62	33.29	35.02			
Base _{attr} (ours)	31.57	41.89	32.80	35.42			
DAT _{char}	54.89	40.19	37.95	44.34			
DATphone	28.15	38.61	34.11	33.62			
DAT _{attr} (ours)	29.98	40.28	30.23	33.81			

SKR of Unseen Languages (Phone Mismatch)

- OOV in 3 unseen languages: Turkish, Latvian, Lithuanian
- Models obtained as before (no retraining, zero-shot transfer)
 > Base_{attr} outperforms Base_{char} and Base_{Phone} (Base_{char} is the worst)
- After DAT, Base_{attr} performs even better (the best so far)

0	UL						
System	tr	lv	lt	Avg.			
Basechar	61.79	61.18	39.39	54.12			
Basephone	54.50	45.50	43.64	47.88			
Base _{attr} (ours)	48.33	40.10	30.30	39.58			
DAT _{char}	61.23	57.33	45.45	54.67			
DATphone	46.67	39.59	49.70	46.33			
DAT _{attr} (ours)	42.96	36.25	26.36	37.10			

Table 6: Zero-shot transfer: Testing WER (%) of the 3 unseen languages (UL), namely Turkish, Latvian, and Lithuanian.

25

25

SKR with Large Pre-trained Models

- End-to-end (E2E) models: Google, Facebook, Meta, Nvidia, etc.
 Replying on LM for resource-rich languages in multilingual ASR
- Average SKR WER comparisons for 8 seen languages (no LM)

ID-IV (Basephone)	Whisper (Fine-tuned)	Facebook (Fine-tuned)
13.32%	56.73% (13.54%)	54.39% (xx%)

Large pre-trained models do not do much better after fine-tuning, but require much bigger model sizes (95 MB vs. small Whisper of 244 MB)

Average WERs of OOV for 3 of the 8 seen and 3 unseen languages

ID-OOV	Whisper (Facebook)	OD-OOV	Whisper (Facebook)				
35.02%	77.78% (72.18%)	47.88%	78.64% (73.21%)				
With no fine-tuning, large pre-trained models perform much worse							

Conclusion and Future Work

- Knowledge-ignorant modeling for pattern recognition is mathematically well-formulated: carrying us a long way so far
- Knowledge-rich modeling leverages on data-driven modeling
 - > From top-down decoding to highly-parallel, bottom-up processing
 - > Information integration within the speech knowledge hierarchy
- Robust information extraction supplements pattern matching with/plus signal processing to detect "islands of reliability"
 - > A collaborative community effort: everyone can help
- Final grand challenge: language-universal modeling
 - > Can we train ASR models for all languages once and for all ??
 - > How do we learn from human language acquisition ??